
Approximate Triangle Count and Clustering Coefficient
Siddharth Bhatia

BITS, Pilani

ABSTRACT
Two important metrics used to characterise a graph are its triangle
count and clustering coefficient. In this paper, we present methods
to approximate these metrics for graphs.

ACM Reference Format:
Siddharth Bhatia. 2018. Approximate Triangle Count and Clustering Coeffi-
cient. In SIGMOD’18: 2018 International Conference on Management of Data,
June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3183713.3183715

1 INTRODUCTION
The need for analytic tools to describe and understand graphs is
stronger than ever. The triangle count (TC) and the clustering coeffi-
cient (CC) are the two most commonly used metrics to characterise
a graph. They both give an intuition of the community structure.
In this paper, we extend the methods presented in [3] to allow the
approximation of the TC and CC of graphs. These methods are
based on wedge sampling. A wedge is a path of length 2: a pair
of edges sharing a vertex. Here, we make the assumption that the
graph is stored in CSR format which is one of the most commonly
used format for sparse graphs. We describe the method in Section
2 and its performance in Section 3.

2 METHOD
2.1 Triangle Count and Clustering Coefficient
A triangle in an undirected graph is a set of three vertices such that
any two of them are connected. A wedge is a set of three vertices
such that one of them, the center, is connected to the other two. The
triangle count is the number of triangles and the global clustering
coeffient is the ratio of triangles and wedges. Graph is stored in CSR
format because it allows us not to process the entire graph before
sampling. Also the possible atomic operations are node sampling,
edge sampling, node sampling with distribution proportional to
degree, and finding the degree of a vertex in O (1).

Symbols:V : number of vertices, E: number of edges,W : number
of wedges, dv : degree of vertexv , S0: number of vertices without an
edge (dv = 0), S1: number of vertices with a single edge (dv = 1),
Wv =

(dv
2
)
: set of wedges centred on vertex v , v (w): the vertex

in the center of wedgew , c (w): whether wedge is closed. 1 if it is
(there is a triangle) and 0 otherwise, TC = ∑w ∈W c (w)/3: triangle
count, CC = TC

W : clustering coefficient

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4703-7/18/06.
https://doi.org/10.1145/3183713.3183715

2.2 Approximating Triangle Count and
Clustering Coefficients

Three methods have been considered to estimate the triangle counts.
Each of them uses a different distribution to sample vertices for
which we randomly generate a wedge and use importance sampling
if necessary. Importance samplingworks by reweighing the samples.
Simply put, if you’re looking for the average value of f (x) under
distribution p (x) : Ep (f (x)), and we can sample from distribution
q(x), we note that Eq (p (x)f (x)q (x)) = Ep (f (x)). In other words, we

find the average value of p (x)f (x)q (x) under distribution q(x). Because
calculating the clustering coefficient from the triangle count is so
simple, we are only considering the triangle count at the moment.

2.2.1 Uniform Wedge. The first method is based on the idea of
sampling the wedges uniformly and then projecting this result to
the whole of the graph. It is easy to calculate how many wedges
a vertex has since it is the number of ways we can choose two of
its neighbors. Because we are using the CSR format, we already
know the accumulative indicies. From that we can calculate the
accumulative wedgecounts.

Algorithm 1 Uniform Wedge
1: TotalW edдes ← 0
2: for v ∈ {0, ..., V − 1} do
3: AccW edдeCount [v] = TotalW edдes
4: TotalW edдes += dv ∗(dv −1)

2
5: end for
6: sum = 0
7: for i ∈ {0, ..., SampleSize − 1} do
8: r = RandomNumber (0, TotalW edдes)
9: index = binarySearch (r, AccW edдeCount)
10: w = GenerateRandomW edдe (index)
11: sum += c (w)
12: end for
13: r eturn TotalW edдes∗sum

3∗SampleSize

If we pick a number uniformly from the interval [0,W) and find
the corresponding vertex using a binary search on the accumulative
wedges then the probability of choosing a given vertex v is Wv

W
and therefore the probability of choosing a given wedge w with
center v is p (w) = 1

W . Because the distribution is uniform, we do
not need to use importance sampling. The triangle count estimate is
TC =

WEp (c (w))
3 . The division by 3 is necessary because we count

each triangle three times as each vertex is a possible center of a
wedge.

2.2.2 Uniform Edge. In the second method we sample the edges
uniformly. Choosing a number randomly in the interval [0,E) corre-
sponds to an edge from the edge list. Looking this up in the accumu-
lative indices we can findv . We have to repick ifv has only a single
edge because then there is no wedge to sample. We are choosing a
vertex v with probabilty dv

V−S1 . Then choosingw such that v is the

center ofw corresponds to q(w) =
dv (w)

Wv (w) (V−S1)
= 2

(dv (w)−1) (V−S1) .

Student Research Competition Posters SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1809

https://doi.org/10.1145/3183713.3183715
https://doi.org/10.1145/3183713.3183715

Algorithm 2 Uniform Edge
1: S1Estimate ← 0
2: for i ∈ {0, ..., SampleSize − 1} do
3: r = RandomNumber (0, V)
4: if dr = 1 then
5: S1Estimate++
6: end if
7: end for
8: S1Estimate = V ∗S1Est imate

SampleSize
9: sum = 0
10: for i ∈ {0, ..., SampleSize − 1} do
11: repeat
12: r = RandomNumber (0, E)
13: index = search (r, AccIndices)
14: until dindex > 1
15: w = GenerateRandomW edдe (index)
16: sum += c (w) (dindex − 1)
17: end for
18: r eturn (2E−S1Est imate) (sum)

6∗SampleSize

Because the distribution is not uniform on the wedges we
need to apply a weight dv (w)−1

2 to the samples according to the
method of importance sampling. The triangle count estimate is
TC = 2E−S1

6 Er ((dv (w) − 1)c (w)). Of course for that we need S1 so
we need to estimate that too. The benefit of this method is that it
requires no precomputation of the accumulative wedgecounts but
we lose some accuracy with the non-uniform sampling.

2.2.3 Uniform Vertex. In the third method we sample the verti-
cies uniformly. Choosing a number randomly in the interval [0,V)
corresponds to a vertex v . We have to repick if v has no or only a
single edge because then there is no wedge to sample. We are choos-
ing a vertexv with probabilty 1

V−S1−S0 . Regarding the wedges, that
corresponds to r (w) = 1

Wv (w) (V−S1−S0)
.

Algorithm 3 Uniform Vertex
1: SEstimate ← 0
2: for i ∈ {0, ..., SampleSize − 1} do
3: r = RandomNumber (0, V)
4: if dr = 1 or dr = 0 then
5: SEstimate++
6: end if
7: end for
8: SEstimate = V ∗SEst imate

SampleSize
9: sum = 0
10: for i ∈ {0, ..., SampleSize − 1} do
11: repeat
12: index ← RandomNumber (0, V)
13: until dindex > 1
14: w = GenerateRandomW edдe (index)

15: sum += c (w)
(dindex −1) (dindex −1)

2
16: end for
17: r eturn (V−SEst imate) (sum)

3∗SampleSize

Because the distribution is not uniform on the wedges we
need to apply a weight (Wv (w)) to the samples according to the
method of importance sampling. The triangle count estimate is
TC = V−S1−S0

3 Er (Wv (w)c (w)). This method also has the benefit of
no precomputation and requires no access to the edge list for the
sampling. In practice the disadvantages outweight the advantadges
because the difference between the triangle counts of higher degree
verticies and lower degree vericies leads to intolerable inaccuracy
therefore this method was not extensively tested.

Table 1: Graphs used for the experiments

Graphs Nodes Edges Triangles Size AvDeg STD MaxDeg Source
Twitter 61.6M 1.5B 34,824,916,864 9.4GB 57.7 402 2,997,487 [2]
RMAT-24 16.7M 268.4M 10,489,616,353 2.1GB 56.5 555 175,007 [1]
RMAT-25 33.6M 536.9M 23,284,863,734 4.2GB 58.8 527 273,738 [1]
RMAT-26 67.1M 1.1B 51,559,452,522 8.4GB 61.2 632 430,269 [1]
RMAT-27 134.2M 2.1B 114,007,006,286 17GB 63.6 601 676,199 [1]

3 EVALUATION
For evaluation purposes, we conducted experiments on a 24- core
machine. The graphs used are summarized in Table 1. Our experi-
ments showed Uniform Vertex to be inferior to the other methods
in almost all the cases. This can be explained by the extremely high
maximum degrees of our datasets (shown in Table 1.) Using the
Uniform Vertex method, the result is very sensitive on how many
times the high degree vertices are picked and, since these are very
few, a lot of samples are required for high accuracy. The Uniform
Edge performs better than the Uniform Vertex as it is closer to the
original distribution of the Unifrom Wedge and, also, handles the
problem of high degrees better. This is because the high degree
nodes are lucky to be picked since they have many edges. Note,
however, that it is not as good as the UniformWedge at this because
the number of wedges go as squared the degree and, thus, those
vertices are picked almost exclusively. Another shortcoming of both
of these methods is that it is very difficult to provide confidence
bounds, as the distribution needs scaling. We evaluated the conver-
gence of Uniform Wedge method with increasing sample sizes and
found that the accuracy of the method does not depend on the size
of the graph. Instead, it depends on the global clustering coefficient;
the closer it is to 0.5, the quicker the convergence. In order to be
able to reason about graphs with unknown number of triangles, we
provide confidence bounds as well as the estimated number. Figure
1 shows the bounds for Twitter at 105 and 106 samples. There is
only one case where the triangle number is outside the 90% interval,
and thus the bounds are accurate.

Figure 1: Confidence bounds on Twitter dataset

2

Student Research Competition Posters SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1810

REFERENCES
[1] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive

model for graph mining. In Proceedings of the 2004 SIAM International Conference
on Data Mining, pages 442–446. SIAM, 2004.

[2] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a
social network or a news media? In Proceedings of the 19th international conference

on World wide web, pages 591–600. ACM, 2010.
[3] Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. Triadic measures on graphs:

The power of wedge sampling. In Proceedings of the 2013 SIAM International
Conference on Data Mining, pages 10–18. SIAM, 2013.

[4] Bin Wu, Ke Yi, and Zhenguo Li. Counting triangles in large graphs by random
sampling. IEEE Transactions on Knowledge and Data Engineering, 28(8):2013–2026,
2016.

3

Student Research Competition Posters SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1811

	Abstract
	1 Introduction
	2 Method
	2.1 Triangle Count and Clustering Coefficient
	2.2 Approximating Triangle Count and Clustering Coefficients

	3 Evaluation
	References

