
Parallelization of Error Weighted Hashing for Approximate k-Nearest neighbour
search on GPU-CPU hybrid

Siddharth Bhatia

Birla Institute of Technology and Science, Pilani
siddharthbhatia2003@gmail.com

Mohan Pavan Kumar Badarla

SERC, Indian Institute of Science
pavanbadarla@gmail.com

Abstract—Error Weighted Hashing (EWH) is a fast algo-
rithm for Approximate k-Nearest neighbour search in Ham-
ming space. It is more efficient than traditional Locality
Sensitive Hashing algorithm (LSH) since it generates shorter
list of strings for finding the exact distance from the query. We
have parallelized the EWH algorithm using Cuda and OpenMP.
Speedup of 44 times on a 16 core GPU and 16 core CPU
machine was achieved in case for hashing and 24 times for
retrieval.

Keywords-Approximate nearest neighbour search; Hamming
space; Locality Sensitive Hashing

I. INTRODUCTION

Nearest neighbour search in Hamming space is the

problem of finding close matches of a query string from a

set of strings in reference database. Given a b-bit binary

string (i.e, contains 0 or 1 in all the b bits), the problem

is to find k strings that match with the query string

approximately. A string is closely matched with other string

if it has the same values (i.e, 0 or 1) in many bits. For

example [0010] matches more closely with [1010] (1-bit

difference, only fourth bit) than [0100] (2-bit difference,

second and third bits). Hamming distance between two

strings is defined as the number of bits that are different.

Many signal processing applications like matching

fingerprints, identifying existing copies of multimedia and

image search involve nearest neighbour search. Also, it

is required to find the matches very fast. As the database

becomes larger, the searching could become a bottleneck.

Parallel implementations would be very helpful in such

scenarios. Searching methods like linear search or binary

search do not work here due to the huge size of data.

Hence, hashing is used in general for such applications.

LSH is a popular algorithm for nearest neighbour search.

EWH algorithm was proposed recently [1] which modifies

the process of retrieval of strings from the database. It

generates a smaller shortlist of strings which has to be

checked for exact matches and hence leads to a better

performance.

General-purpose computing on graphics processing

units (GPGPU) is the technique of using a Graphics

processing unit (GPU) to perform the computations usually

handled by the central processing unit (CPU). The key idea

is to use the huge parallel computing power of GPU to

achieve good speed-up. Hashing is a problem where the

hash value of one string doesn’t depend on the other. So,

the massively large amount of threads available on a GPU

could be exploited to obtain good performance. The aim

of this work is to devise and implement the stategies for

EWH algorithm on GPGPUs.

Rest of the paper is organised as follows. In the next

section LSH, EWH and distributed LSH [2] will be briefly

described. Section III describes the strategies used for

parallelizing EWH. Section IV contains the details of

experiments and results. The paper is concluded in section

V.

II. RELATED WORK

LSH is a prominent algorithm in Nearest neighbor search

literature [1]. LSH and EWH algorithms use similar strategy

for hashing. They differ only in the retrieval process. LSH

is built on a simple idea: Assume two binary strings that

are close in the Hamming space, i.e., they differ only in few

bits. If a sub-string is extracted from each of them in the

same order, then the probability of these sub-strings being

identical will be high. By the same order, we mean that,

for example, if the first bit of one sub-string corresponds

to the fifth of one original string, then the first bit of the

second sub-string should correspond to the fifth bit of the

second string, and so on.

Hashing of strings is done in the following way. Let

us consider that our target database consists of b-bit binary

strings and hash functions are characterised by h random

bits from 0 to (b − 1). Given a string, the hash function

looks only into these h bits of the total b bits. The h-bit

binary vector of a hash function ki is formed from the query

and let us call it as the hash vector of the query string with

respect to ki. Its value in decimal representation is taken to

be the hash value. A h-bit hash function will have 2h hash

buckets in total. Thus for n-hash functions, the hash table

consists of 2h rows and n colums. As the number of hash

2016 IEEE 2nd International Conference on Big Data Security on Cloud, IEEE International Conference on High Performance

and Smart Computing, IEEE International Conference on Intelligent Data and Security

978-1-5090-2403-2/16 $31.00 © 2016 IEEE

DOI 10.1109/BigDataSecurity-HPSC-IDS.2016.72

203

Figure 1. Hashing of a string f with functions k1, k2, ... kn

functions increase, we would be considering many bits of

the string and hence the result will be more accurate. But as

the number of hash functions increase, the time complexity

increases. A string goes into its respective buckets for

different hash functions k1 ,k2 ,k3kn with h = 4 bits as

shown in Figure 1.

Mani et al. [1] proposed the Error weighted hashing

algorithm which has better detection accuracy and less

retrieval time compared to Locality sensitive hashing. LSH

and similar algorithms fail if there happens to be errors in

many hash vectors of the query. Also, LSH fails to include

the nearest neighbour in candidate list if none of the hash

functions match exactly with it. EWH resolves this problem

by considering erroneous hash vectors and using them to

generate candidate list. Given a query string, the algorithm

considers buckets where hash vectors match exactly (i.e.,

no-error) or with 1-bit error or with 2-bit-error and so up

to e-bit-error. e is assumed to be 2 in current work. with

respect to a hash function. Then, scores are added to strings

which have the corresponding hash value (i.e, corresponding

bucket in hash table). It adds a high score to strings present

in no − error buckets and a relatively low score to 2-bit-

error buckets. A string with less error with respect to many

hash vectors (out of n functions) will obtain high score.

Next step is to retrieve all the strings which have score

greater than a particular threshold and this is the step where

EWH algorithm differs from LSH. LSH doesn’t have this

score concept and ends up computing exact distances for all

the strings in a bucket. The number of strings which LSH

checks for exact match is claimed to be higher than the

number which EWH does [1]. Since the exact match is the

bottleneck of performance, LSH ends up in high execution

times. Though there is an additional overhead in computing

the scores for each string in database, the number of strings

EWH checks for computing exact distance is less and hence

Figure 2. EWH illustration for string f with hash function k1

is expected to perform well.

Smita and Pawan [2] proposed an algorithm for

parallelizing LSH using distributed systems. The hash table

consists of buckets corresponding to n functions. The task

of constructing the hash tables is distributed among the

processors. Each processor constructs a hash table for one

hash function independently. During the retrieval, the query

string is broadcasted to all the processors. Now, with the

local hash table the query is searched and a shortlist (i.e.,

strings in a bucket where hash vector matches exactly) is

constructed. Then, the k-best among them are selected. The

k-best from each processor is gathered on one processor

and the final k-nearest neighbours are computed. This

method of having part of hash tables in different processors

may lead to load imbalance because the size of shortlist on

different processors would be different.

EWH algorithm has better performance in terms of

both execution time and detection accuracy. Parallelizing

EWH would improve the execution time even better. The

problem is inherently parallel as the work that needs to be

done with respect to one hash function is independent of

other. Also, the task of hashing and operations like updating

scores of strings in a large hash bucket are data-parallel.

GPUs have shared-memory many-core architecture which

is suitable for this application. The objective of this work

is to devise parallelizing strategies for EWH on GPUs.

III. METHODOLOGY

A. Hashtable construction
Algorithm 1 describes the method for constructing the

complete hash table. For n hash functions with each

function characterized by h random bits and hence hash

table will have 2h rows and n columns. The size of hash

table would be 2h X n buckets. The sum of elements in

204

buckets of each column will be equal to total number of

strings in the database. Every string needs to be stored

once in each column. We use dictionary compression to

save on memory. Each bucket of hash table contains the

identifiers (index of string in the database) of strings whose

hash value maps to its bucket number.

Algorithm 1 Construction of hash table

INPUT: Database of b bit strings: F , Number of hash

functions: n, key length: h
OUTPUT: Hash table of 2h rows and n columns: T

1) for i = 1 to n do

a) Generate random keys ki = z1z2...zh with

zj ε 1, 2, .., b for 1 ≤ j ≤ h
b) for all fεF do

i) Add f to row H(fki
) and column i of T

c) end for

2) end for

The data-structure we use for hash table is a simple array

of (n X number of strings) integers where n is the

number of hash functions used. As the task of hashing is

highly data parallel, the massively large amount of cores of

GPUs can be used to maximum extent. A string may go into

different buckets for different hash functions. While hashing,

we need to maintain an index which would be the position

of next string to be inserted into the bucket. Initially, we find

how many strings would go into a bucket. This has to be

done before the actual hashing happens. Since the threads of

different blocks of GPU cannot be synchronized, we launch

two kernels for the hash table construction. One kernel to

find out the start indices of each bucket and the other to

actually hash the strings to buckets. In the first kernel, when

a thread encounters a string that would go into a bucket,

it increments the bucket size atomically. Same has to be

followed during actual hashing also to avoid synchronization

issues. After finding out the number of elements in each

bucket, a prefix scan is done to get the start index of each

bucket. Algorithm 2 describes the parallel algorithm for

hashing.

B. Retrieval of k-Nearest neighbours of a query

The retrieval process for Sequential EWH is described

in Algorithm-3. Scores of all the strings in the database is

initialized to zero. Retrieval process can be divided into four

steps. The score of each string is initialized to zero.

1) Find the buckets to search (buckets that have 0,1 or

2-bit error difference with query)

2) Update score of strings present in these buckets

Algorithm 2 Parallel implementation

INPUT: Database of b bit strings: F , Number of hash

functions: n, key length: h
OUTPUT: Hash table of 2h rows and n columns: T

1) for each string f in the database do

(This for loop is executed by each thread in parallel)

a) for j = 1 to n do

i) Get the hash value(bucket number) of f for

function j
ii) Atomically increment size of corresponding

bucket

iii) Store the index of string in database in bucket

b) end for

2) end for

Algorithm 3 Sequential EWH retieval

INPUT: Query fingerprint q, fingerprint(binary strings)

database F , hash table T , a set of weights αr (0 ≤ r), the

similarity threshold s0
OUTPUT: Nearest neighbor(s) of q

1) Initialize the score to 0 for all the fingerprints in the

database

2) for i = 1 to n do

a) Find h0, the hash value for qki

b) Add α0 to the score of each fingerprint in column

i and row h0

c) for r = 1 to e do

i) Find hr, the set of hash values for all binary

vectors that have r-bit difference with qki

ii) Add αr to score of all fingerprints in buckets

in column i corresponding to rows hr

d) end for

3) end for

3) Compute exact distance from query for strings which

have score greater than a threshold

4) Find the top k nearest among these strings

1) Find buckets to be searched: The first step is to

find the buckets of hash table which have 0,1 or 2-bit

error with the given query. This task solely depends on

the query and is a light weight task. h-bit hash vector

(corresponding to one hash function) of query will have

one h-bit vector which matches with it exactly, h vectors

which match with 1-bit error and hC2
vectors which match

with 2-bit error. Total number of buckets to be searched

will be (1 + h + hC2) for each hash function. This step

can be considered for CPU-GPU overlap i.e., when GPU

is busy doing the other three steps of retrieval, CPU can

compute the first step of the next query.

205

2) Update scores of strings: Next step is to update

scores of all strings in the buckets computed. The motivation

for this can be explained as follows. Lets us say a string

s1 matches with 0-bit error for one hash function and

doesn’t match at all for the rest. String s2 matches with

1-bit error for two of the hash functions. i.e., s1 matches

for h bits with query while s2 matches 2 ∗ (h− 1) bits. The

probability of s2 being nearest neighbour is higher than s1
and should be considered for exact matching in the next step.

Each string occurs exactly once in the column of

hash table corresponding to a hash function. If we try

to update strings from all hash functions simultaneously,

it will lead to inconsistencies. This is because the string

could be present in selected hash buckets of different hash

functions. One simple strategy is to update scores for each

hash function one after the other. Another would be to

use atomic functions and update them in parallel. If the

number of hash functions used are high in number, the

first strategy will take more time. In this work, we have

used the second strategy. A certain number of blocks of

the kernel would be assigned to update scores of strings in

one bucket. Threads in a single block access consecutive

locations of hash bucket. Since we have stored the indices

of strings belonging to a bucket in consecutive locations in

an array, the thread accesses will be coalesced.

3) Computation of exact distance from query for
shortlisted strings: Once scores have been updated,

the strings which are greater than threshold have to be

shortlisted for further search. One simple strategy to do

this is to assign one string per thread to check whether

its score is above threshold and then calculate the exact

distance from the query. But this will lead to severe load

imbalance because many threads would just check for the

condition and when the score is below threshold would be

idle. Hence a group of strings are assigned to each thread.

One way to do this is to assign consecutive strings to a

thread. Another way is to assign consecutive strings to

threads with consecutive thread-ids just like round-robin

strategy. The second method should work well because it

will lead to memory accesses which are coalesced. So,

each thread checks whether the score is above threshold

and brings the index of corresponding string in database to

shared memory of the block.

The next step is to compute the exact distance from

query i.e., to compare bit-by-bit. A single thread could be

assigned to do this for one string. But the total no.of strings

shortlisted in a block of threads could be less than the

total number of threads leading to some threads being idle.

Better strategy is to use b threads (where b is the dimension

of strings in database) to compare and then do a reduce

operation to compute the exact distance. This computation

is the bottleneck of EWH algorithm and using an efficient

strategy should boost overall performance of algorithm.

The result is stored in the shared memory and will be used

in the next step.

4) Top k-nearest neighbours among shortlisted strings:
We need to find the top k strings which are close to the

query. Sorting of all these selected strings is not necessary

since the value of k is expected to be small compared to

the data size. Hence, we use a method which computes the

rank of strings in the array. The set of strings positioned

at thread− id multiples are assigned to a thread. For each

string, a scan through the array will give the number of

strings having hamming distance less than itself. The scan

can be stopped once the count reaches k. Since we have

already stored the distance of each string in the shared

memory, we first compute k best among the strings in shared

memory. Then copy them to global memory and compute

the global rank in another kernel. Another kernel has to

be launched becaue we need synchronization among blocks.

While finding the top k in an array stored in global memory,

each thread could start its scan from starting of the array.

But a better thing to do is each thread starts the scan from

its global − id position so that thread all the threads will

be accessing consecutive locations and hence the accesses

would be coalesced.

C. Overlap of CPU and GPU
The system to which GPU is connected would typically

be a multi-core system. We can load the cores on CPU with

some work to completely use the hardware available. Work

distribution between CPU and GPU can be a tricky task and

often depends on the relative speeds. It varies from system

to system and needs to be determined experimentally. In

present work, for Hashing (builing of hash table) we did

some trial and error to divide the work between CPU and

GPU. We found that about 6% of work done on CPU is

optimal for the system we worked on.

IV. EXPERIMENTS AND RESULTS

The experiments are done with a database of 4-million

512-bit strings. The number of hash tables considered are

four. Each of the hash function contains 4 bits and hence the

hash table for each function contains 16 buckets. Total size

of hash table is 64 (4X16). Experiments were performed

for 5 cases i.e., Sequential LSH(baseline), MPI LSH (as in

[2]), Sequential EWH, CUDA EWH and CUDA+OpenMP

EWH.

A. System configuration
1) CPU:

Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

32 cores with hyperthreading [16 real cores]

206

Cache size : 20480 KB

MemTotal : 132264384 kB

2) GPU: Tesla K20m

B. Results
Results obtained for hashing and retrieval of one query

are tabulated in the Tables below. The results were compared

with the distributed LSH algorithm proposed in [2] which

uses n processors for n hash functions. Since we use 4 hash

functions, the number of CPUs used for MPI in 4. Each

processor builds its own hash table for a hash function.

Speed-up is calculated w.r.t sequential LSH. For hashing,

speed-up obtained is much higher because it is highly data

parallel. LSH and EWH follow the same strategy for hashing

and hence we see that the time taken is almost same.

Experiment Hashing (s) Speed-up

Seq. LSH 26.6 -

MPI LSH 10.5 2.5

Seq. EWH 26.9 -

CUDA EWH 0.7 38

CUDA+OpenMP EWH 0.6 44

Experiment Retrieval (s) Speed-up

Seq. LSH 19.3 -

MPI LSH 6.4 3

Seq. EWH 7.6 2.5

CUDA EWH 0.8 24

CUDA+OpenMP EWH 0.8 24

V. CONCLUSION

Results show-case the speed-up that can be obtained by

using EWH on GPUs for Approximate k-Nearest neighbor

search. We Distributed 6% of GPUs independent workload

to CPU for better resource utilization. Speedup of 44 times

on a 16 core GPU and 16 core CPU machine was achieved

in case for hashing and 24 times for retrieval.

The possibility of using multiple GPUs to further accelerate

the execution time could be explored in future. We also

plan to devise parallelization strategies for the cases where

database doesn’t fit in GPU memory.

ACKNOWLEDGMENT

The authors would like to thank Prof. Sathish Vadhiyar,

Super-computer Education and Research Centre(SERC), In-

dian Institute of Science who guided us during the project.

We would also like to thank fellow students of MARS lab,

SERC.

REFERENCES

[1] Mani Malek Esmaeili, Rabab Kreidieh Ward, and Mehrdad
Fatourechi. A fast approximate nearest neighbor search algo-
rithm in the hamming space. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 34(12):2481–2488, 2012.

[2] Smita Wadhwa and Pawan Gupta. Distributed locality sensi-
tivity hashing. In Consumer Communications and Networking
Conference (CCNC), 2010 7th IEEE, pages 1–4. IEEE, 2010.

[3] Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Ef-
ficient distributed locality sensitive hashing. In Proceedings
of the 21st ACM international conference on Information and
knowledge management, pages 2174–2178. ACM, 2012.

[4] Jeremy Buhler. Efficient large-scale sequence comparison
by locality-sensitive hashing. Bioinformatics, 17(5):419–428,
2001.

[5] Ting Liu, Andrew W Moore, Ke Yang, and Alexander G Gray.
An investigation of practical approximate nearest neighbor
algorithms. In Advances in neural information processing
systems, pages 825–832, 2004.

[6] Jia Pan and Dinesh Manocha. Fast gpu-based locality sensitive
hashing for k-nearest neighbor computation. In Proceedings
of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages 211–220.
ACM, 2011.

207

