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Problem 

T3.1: Detecting Anomalous Dynamic Subgraphs

Input:
• Record stream 𝑹
• Each having 𝒅 dimensions

Output:
• Anomaly Score for each Record

Our Contributions:
• Multi-Aspect Group Anomaly Detection
• Streaming Approach
• Capture Correlation Between Features
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T3.1: Detecting Anomalous Dynamic Subgraphs

𝑠𝑢𝑣 : 𝑢 − 𝑣 edges up to time 𝑡
𝑎𝑢𝑣 : 𝑢 − 𝑣 edges at current time 𝑡

�̂�𝑢𝑣 :  Approximate total count
#𝑎𝑢𝑣 : Approximate current count
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MIDAS: CMS+Chi-squared test

Future Work

(𝑎𝑢𝑣 ≤ 𝑎𝑢𝑣 + 𝜐𝑁𝑡 with probability at least 1 − 𝜀
𝜐 is the amount of error we can tolerate.
1 − 𝜀 is the probability.
e.g. with 99% probability only up to 0.5% error

Background
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Algorithm

Future Work

R?????H?s?

F??????H?s?

Calculate 
Anomaly 

Score

Real-valued

Categorical

Dimensionality 
Reduction
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Algorithm
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Incorporating Correlation Between Features

Future Work

1. Principal Component Analysis

2. Information Bottleneck

3. Autoencoder



Time and Memory Complexity
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𝑤: number of hash functions
𝑏: number of buckets
𝑑: number of dimensions/features

Space complexity:
• 𝑂(𝑤𝑏𝑑)

Time complexity:
• 𝑂(𝑤𝑑)
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Datasets
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1. KDDCUP99: 1.21M records (20% anomalies), 42 features
2. CICIDS-DoS: 1.05M records (5% anomalies), 80 features
3. UNSW-NB15: 2.5M records (13% anomalies), 49 features
4. CICIDS-DDoS: 7.9M records (7% anomalies), 83 features
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Area under the ROC curve (AUC)
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Running Times
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AUC vs Time
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Scalability
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Discoveries
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Future Work

1. Semi-Supervision

2. Few Labels

3. Generating Anomalous Data

Introduction Method Experiments ConclusionProblem Related Work Future Work



Conclusion
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1. Multi-Aspect Group Anomaly Detection:
• Categorical and Numeric Attributes

2. Streaming Approach:
• Constant Memory and Update Time

3. Effectiveness:
• Capture Correlation Between Features

Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin and Christos Faloutsos. “MStream: Fast Anomaly Detection 
in Multi-Aspect Streams.” The Web Conference (WWW), 2021. https://arxiv.org/abs/2009.08451
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