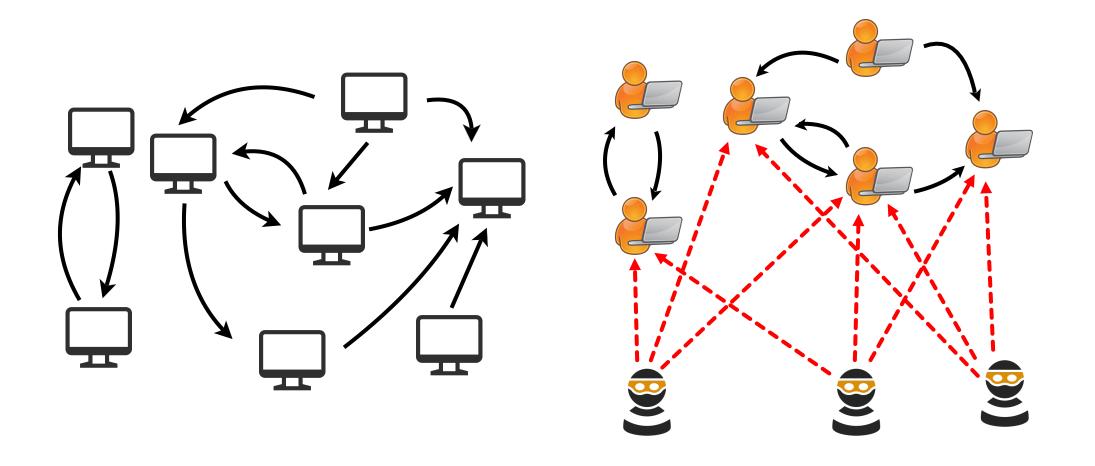
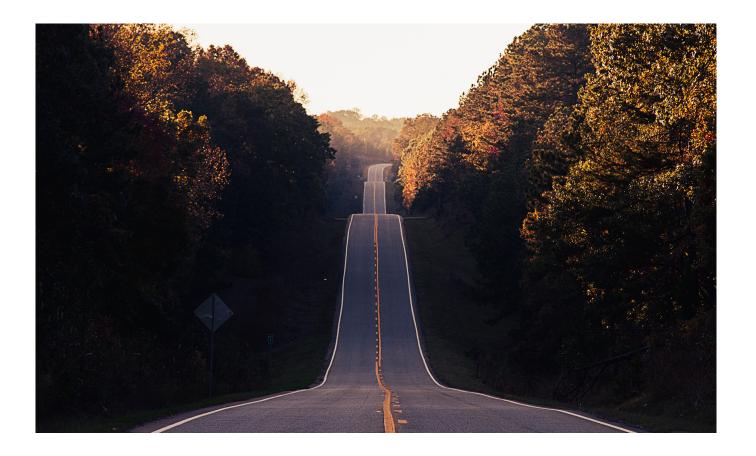
MStream: Fast Anomaly Detection in Multi-Aspect Streams (WWW 2021)

Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, Bryan Hooi


siddharth@comp.nus.edu.sg

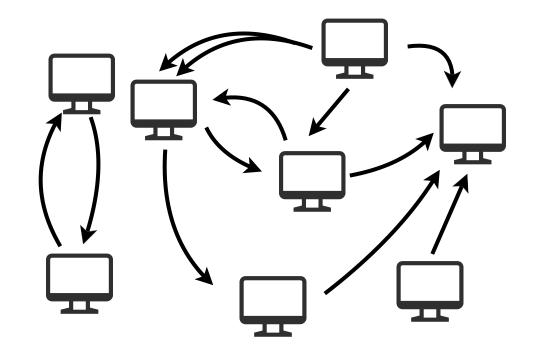

@siddharthb_

https://github.com/Stream-AD/MStream/

Motivation

- Problem
- Algorithm
- Related Work
- Experiments
- Future Work

Input:

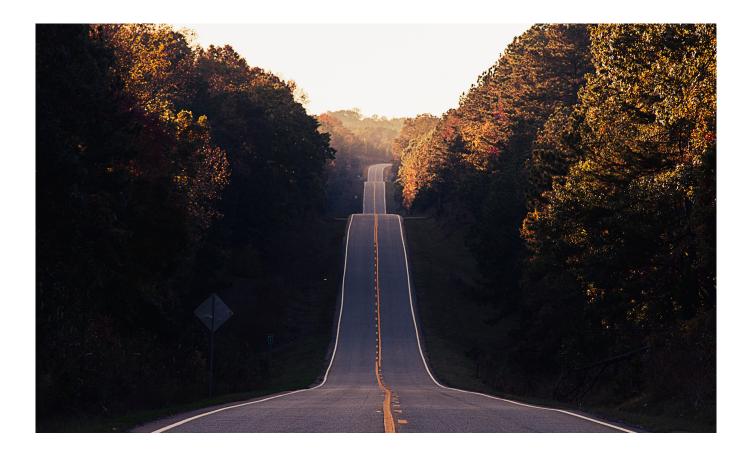

- Record stream R
- Each having *d* dimensions

Output:

Anomaly Score for each Record

Our Contributions:

- Multi-Aspect Group Anomaly Detection
- Streaming Approach
- Capture Correlation Between Features

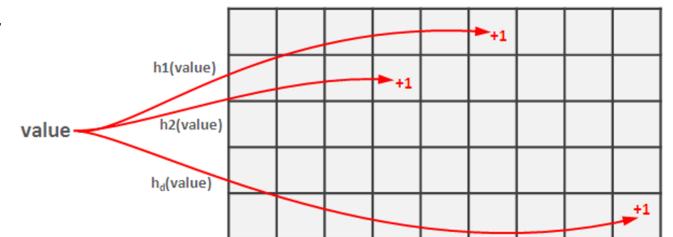


Time	Source IP	Dest. IP	Pkt. Size	•••
1	194.027.251.021	194.027.251.021	100	•••
2	172.016.113.105	207.230.054.203	80	•••
4	194.027.251.021	192.168.001.001	1000	•••
4	194.027.251.021	192.168.001.001	995	•••
4	194.027.251.021	192.168.001.001	1000	•••
5	194.027.251.021	192.168.001.001	990	•••
5	194.027.251.021	194.027.251.021	1000	•••
5	194.027.251.021	194.027.251.021	995	•••
6	194.027.251.021	194.027.251.021	100	•••
7	172.016.113.105	207.230.054.203	80	•••

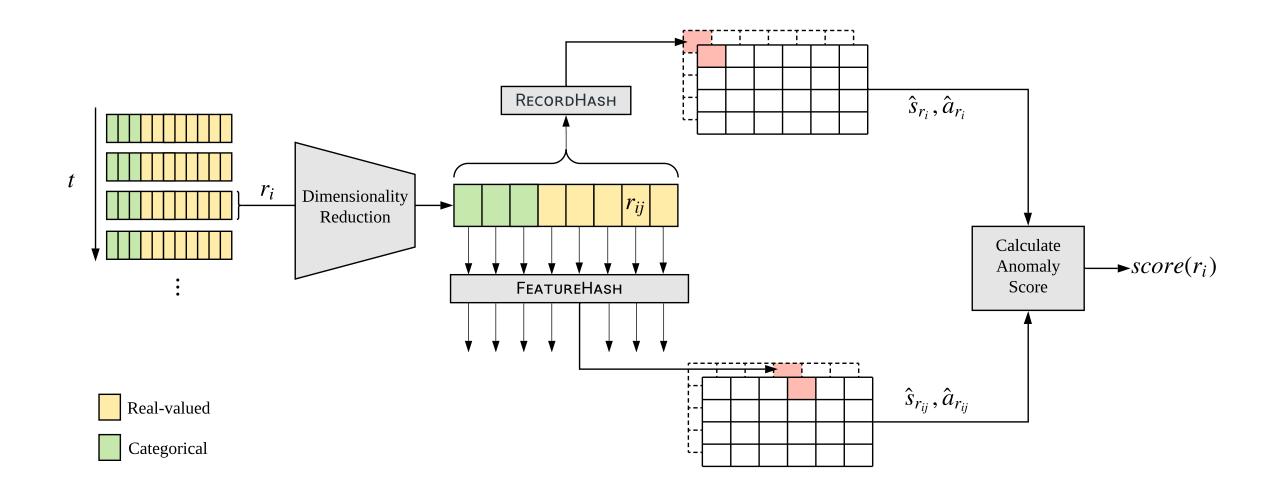
Problem

Algorithm

- Related Work
- Experiments
- Future Work


MIDAS: CMS+Chi-squared test

 $\hat{a}_{uv} \leq a_{uv} + vN_t$ with probability at least $1 - \varepsilon$ v is the amount of error we can tolerate. $1 - \varepsilon$ is the probability. e.g. with 99% probability only up to 0.5% error


 s_{uv} : u - v edges up to time t a_{uv} : u - v edges at current time t

 \hat{s}_{uv} : Approximate total count \hat{a}_{uv} : Approximate current count

$$score((u, v, t)) = (\hat{a_{uv}} - \frac{\hat{s_{uv}}}{t})^2 \frac{t^2}{\hat{s_{uv}}(t-1)}$$

Algorithm 1: FEATUREHASH: Hashing Individual Feature

- Input: r_{ij} (Feature *j* of record r_i) Output: Bucket index in $\{0, ..., b-1\}$ to map r_{ij} into 1 if r_{ij} is categorical 2 output HASH (r_{ij}) // Linear Hash [71] 3 else if r_{ij} is real-valued 4 \triangleright Log-Transform 5 $\tilde{r}_{ij} = \log(1 + r_{ij})$ 6 \triangleright Normalize 7 $\tilde{r}_{ij} \leftarrow \frac{\tilde{r}_{ij} - min_j}{max_i - min_i}$ // Streaming Min-Max
- 8 **output** $[\tilde{r}_{ij} \cdot b] \pmod{b}$ // Bucketization into b buckets

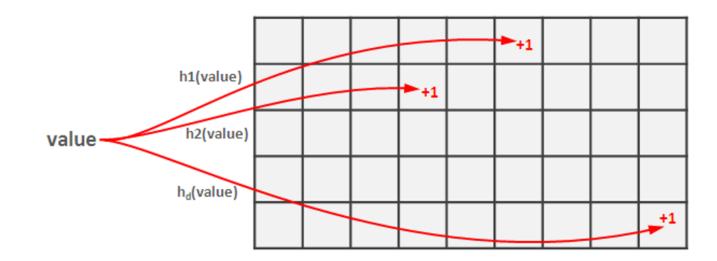
```
Algorithm 2: RECORDHASH: Hashing Entire Record
   Input: Record r_i
   Output: Bucket index in \{0, \ldots, b-1\} to map r_i into
 1 \triangleright Divide r_i into its categorical part, r_i^{cat}, and its
   numerical part, r_i^{num}
2 \triangleright Hashing r_i^{cat}
      bucket_{cat} = (\sum_{j \in C} HASH(r_{ij})) \pmod{b} // Linear
3
     Hash [71]
4 \triangleright Hashing r_i^{num}
    for id \leftarrow 1 to k
5
     if \langle r_i^{num}, \mathbf{a_{id}} \rangle > 0
 6
      bitset[id] = 1
 7
         else
 8
            bitset[id] = 0
 9
      bucket<sub>num</sub> = INT(bitset) // Convert bitset to
10
     integer
11 output (bucket_{cat} + bucket_{num}) \pmod{b}
```

Algorithm 3: MSTREAM: Streaming Anomaly Scoring Input: Stream of records over time Output: Anomaly scores for each record 1 > Initialize data structures: Total record count \hat{s}_{r_i} and total attribute count 2 $\hat{s}_{r_{ij}} \forall j \in \{1, .., d\}$ Current record count \hat{a}_{r_i} and current attribute count 3 $\hat{a}_{r_{ij}} \forall j \in \{1, .., d\}$ 4 while new record $(r_i, t) = (r_{i1}, \ldots, r_{id}, t)$ is received: do Hash and Update Counts: 5 for $j \leftarrow 1$ to d 6 $bucket_i = FEATUREHASH(r_{ii})$ 7 Update count of *bucket*_i 8 $bucket = \text{RECORDHASH}(r_i)$ 9 Update count of *bucket* 10 ▶ Query Counts: 11 Retrieve updated counts \hat{s}_{r_i} , \hat{a}_{r_i} , $\hat{s}_{r_{ij}}$ and 12 $\hat{a}_{r_{ij}} \forall j \in \{1..d\}$ ▶ Anomaly Score: 13 output 14 $score(r_i, t) = \left(\hat{a}_{r_i} - \frac{\hat{s}_{r_i}}{t}\right)^2 \frac{t^2}{\hat{s}_{r_i}(t-1)} + \sum_{j=1}^d score(r_{ij}, t)$

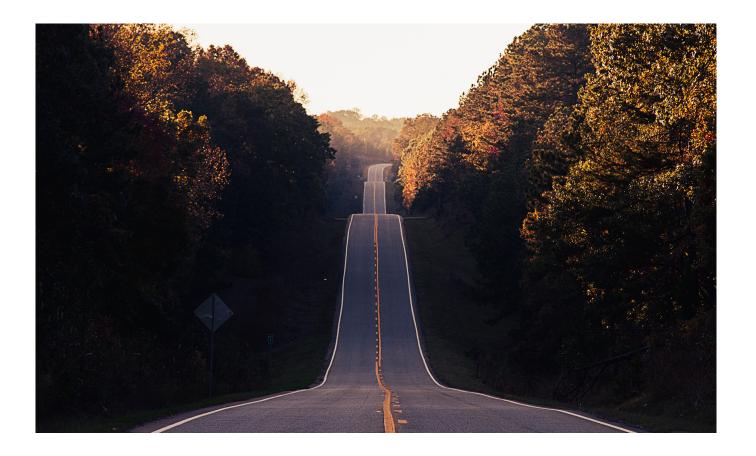
Incorporating Correlation Between Features

- 1. Principal Component Analysis
- 2. Information Bottleneck
- 3. Autoencoder

Time and Memory Complexity


w: number of hash functionsb: number of bucketsd: number of dimensions/features

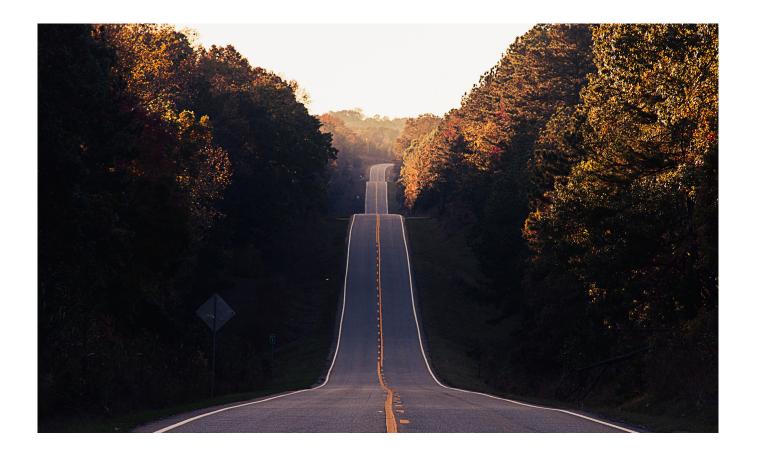
Space complexity:


• 0(wbd)

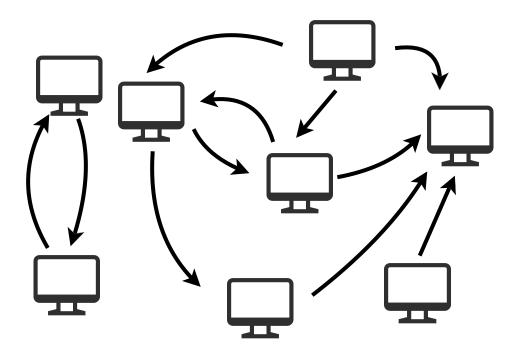
Time complexity:

• *O(wd)*

- Problem
- Algorithm
- Related Work
- Experiments
- Future Work


Related Work

	Elliptic (1999)	LOF (2000)	I-Forest (2008)	STA (2006)	MASTA (2015)	STenSr (2015)	Random Cut Forest (2016)	DenseAlert (2017)	MSTREAM (2021)
Group Anomalies Real-valued Features Constant Memory Const. Update Time	✓	✓	\checkmark	✓	✓	✓	✓ ✓ ✓	✓ ✓ ✓	


- Problem
- Algorithm
- Related Work

• Experiments

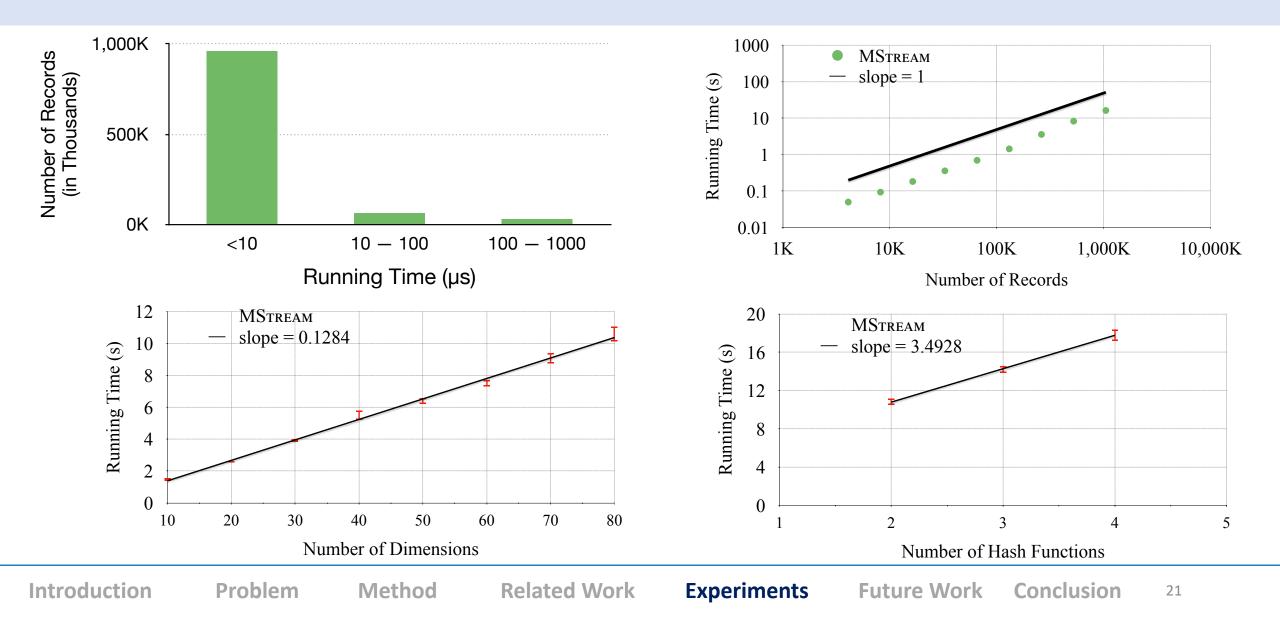
• Future Work

Datasets

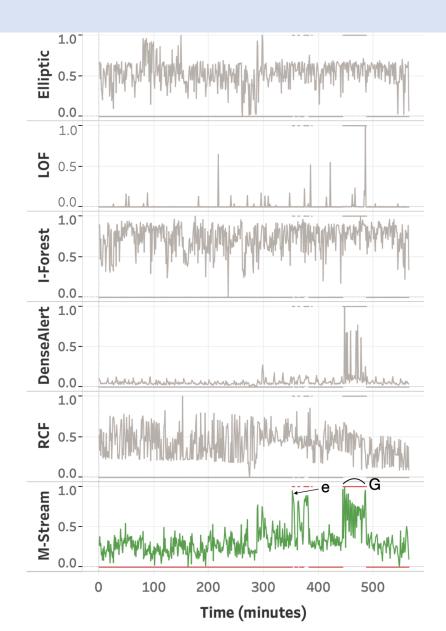
- 1. KDDCUP99: 1.21M records (20% anomalies), 42 features
- 2. CICIDS-DoS: 1.05M records (5% anomalies), 80 features
- 3. UNSW-NB15: 2.5M records (13% anomalies), 49 features
- 4. CICIDS-DDoS: 7.9M records (7% anomalies), 83 features

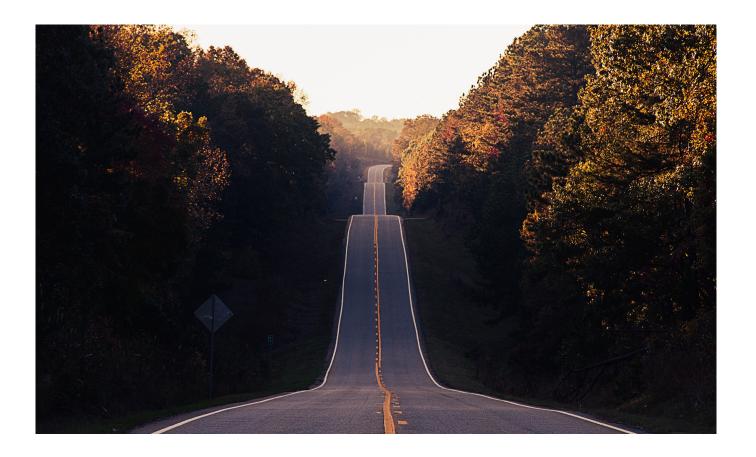

Area under the ROC curve (AUC)

	Elliptic	LOF	I-Forest	DAlert	RCF	MSTREAM	MSTREAM-PCA	MSTREAM-IB	MSTREAM-AE
KDD	0.34 ± 0.025	0.34	0.81 ± 0.018	0.92	0.63	0.91 ± 0.016	0.92 ± 0.000	0.96 ± 0.002	0.96 ± 0.005
DoS	0.75 ± 0.021	0.50	0.73 ± 0.008	0.61	0.83	0.93 ± 0.001	0.92 ± 0.001	0.95 ± 0.003	0.94 ± 0.001
UNSW	0.25 ± 0.003	0.49	0.84 ± 0.023	0.80	0.45	0.86 ± 0.001	0.81 ± 0.001	0.82 ± 0.001	$\boldsymbol{0.90} \pm 0.001$
DDoS	0.57 ± 0.106	0.46	0.56 ± 0.021		0.63	0.91 ± 0.000	0.94 ± 0.000	0.82 ± 0.000	0.93 ± 0.000


Running Times

	Elliptic	LOF	I-Forest	DAlert	RCF	MSTREAM	MSTREAM-PCA	MSTREAM-IB	MSTREAM-AE
KDD	216.3	1478.8	230.4	341.8	181.6	4.3	2.5	3.1	3.1
DoS	455.8	398.8	384.8	333.4	459.4	10.4	2.1	3.7	5.1
UNSW	654.6	2091.1	627.4	329.6	683.8	12.8	6.6	8	8
DDoS	3371.4	15577 <i>s</i>	3295.8		4168.8	61.6	16.9	25.6	27.7


AUC vs Time


Scalability

Discoveries

- Problem
- Algorithm
- Related Work
- Experiments
- Future Work

Future Work

- 1. Semi-Supervision
- 2. Few Labels
- 3. Generating Anomalous Data

Conclusion

- 1. Multi-Aspect Group Anomaly Detection:
 - Categorical and Numeric Attributes
- 2. Streaming Approach:
 - Constant Memory and Update Time
- 3. Effectiveness:
 - Capture Correlation Between Features

Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin and Christos Faloutsos. "MStream: Fast Anomaly Detection in Multi-Aspect Streams." The Web Conference (WWW), 2021. <u>https://arxiv.org/abs/2009.08451</u>

https://github.com/Stream-AD/MStream/