Summary

- Goal: to detect and update dense subtensors in streaming tensors
- Previous Work
 - > showed that dense subtensors signal anomalies or fraud
 - $\succ\,$ batch algorithms for fast and accurate dense subtensor detection
- Algorithm: incremental algorithm for detecting the densest subtensor

• Result:

- > fast: up to 320x faster than best streaming methods,
- robust: splicing theory to do incremental splices for dense block,
- accurate: successfully detect anomalies in real-world tensors, including App rank boosting fraud, and rating manipulations.

Motivation

• Synchronized behavior in App data: rank boosting fraud results in dense subtensors

How can we detect dense subtensors incrementally in streaming tensors

Proposed Algorithm: AugSplicing

- Goal: to incrementally update dense subtensors while the input tensor changes
- **Overall algorithm:** iteratively choose two blocks from <u>candidate</u> <u>blocks</u> and splice these two blocks until reaches the splicing threshold, and output top *k* dense blocks.

Procedure of splicing two blocks:

> splice B_2 into B_1 if $g(B_1) \ge g(B_2)$ to make $g(B_1)$ increase

(1) splice on non-overlapped modes, i.e. *time* mode.
✓ choose one attribute from time mode and overlapped attributes from other modes to generate candidate blocks.

(2) randomly choose a mode to splice until no large-mass blocks

 B_1

Splice

Splicing Theorem

Theorem 1 (Splicing Condition). Given two blocks \mathcal{B}_1 , \mathcal{B}_2 with $g(\mathcal{B}_1) \ge g(\mathcal{B}_2)$, $\exists \mathcal{E} \subseteq \mathcal{B}_2$ such that $g(\mathcal{B}_1 \cup \mathcal{E}) > g(\mathcal{B}_1)$ if and only if

$$M(\mathcal{E}) > \sum_{n=1}^{N} r_n \cdot g(\mathcal{B}_1) = Q \cdot g(\mathcal{B}_1), \tag{1}$$

the number of new attributes \mathcal{E} brings into B_1

Experimental Results

• Q2 Speed: How fast is AugSplicing compared to baselines? • Q3 Accuracy: How accurately does AugSplicing update a

dense subtensor?

